

Welcome to GROOT’s wiki!

GROOT is a tool to profile Antibiotic Resistance Genes (ARGs) in metagenomic samples.

The main advantages of GROOT over existing tools are:

	quick classification of reads to candidate ARGs

	accurate annotation of full-length ARGs

	can run on a laptop in minutes

GROOT aligns reads to ARG variation graphs, producing an alignment file that contains the graph traversals possible for each query read. The alignment file is then used to generate a simple resistome profile report.

Overview

Antimicrobial resistance remains a major threat to global health. Profiling the collective antimicrobial resistance genes within a metagenome (the “resistome”) facilitates greater understanding of antimicrobial resistance gene diversity and dynamics. In turn, this can allow for gene surveillance, individualised treatment of bacterial infections and more sustainable use of antimicrobials. However, resistome profiling can be complicated by high similarity between reference genes, as well as the sheer volume of sequencing data and the complexity of analysis workflows. We have developed an efficient and accurate method for resistome profiling that addresses these complications and improves upon currently available tools.

Our method combines variation graph representation of gene sets with an LSH Forest indexing scheme to allow for fast classification of metagenomic reads using similarity-search queries. Subsequent hierarchical local alignment of classified reads against graph traversals facilitates accurate reconstruction of full-length gene sequences using a scoring scheme. GROOT runs on a laptop and can process a typical 2 gigabyte metagenome in 2 minutes using a single CPU.

Contents

	Using GROOT
	An example

	GROOT subcommands

	GROOT Graphs
	Overview

	Using the graphs

	GROOT Databases
	Overview

	groot-db and groot-core-db

	Tutorial
	1. Setup an environment

	2. Get the data

	3. QC

	4. Run GROOT

	5. ARG context

Using GROOT

GROOT uses a subcommand syntax; call the main program with groot and follow it by the subcommand to indicate what action to take.

This page will cover a worked example, details on the available GROOT commands and some tips for using the program.

For more information on the graphs that GROOT uses, please read the groot-graphs [https://groot-documentation.readthedocs.io/en/latest/groot-graphs.html] page.

An example

This example will take us from raw reads to resistome profile for a single metagenome

Get some sequence data:

fastq-dump SRR4454613

Get a pre-clustered ARG database:

groot get -d resfinder

Create variation graphs from the ARG-database and index:

groot index -m resfinder.90 -i grootIndex -w 100 -p 8

Align the reads and report ARGs

groot align -i grootIndex -f SRR4454613.fastq -p 8 | groot report -c 0.95

GROOT subcommands

get

The get subcommand is used to download a pre-clustered ARG database that is ready to be indexed. Here is an example:

groot get -d resfinder -o . --identity 90

The above command will download the ResFinder [https://cge.cbs.dtu.dk/services/ResFinder/] database, which has been clustered at 90% identity, check its integrity and unpacks it to the current directory. The database will be named resfinder.90 and contain several *.msa files.

Flags explained:

	-d: which database to get

	-o: directory to save the database to

	--identity: the identity threshold at which the database was clustered (note: only 90 currently available)

The following databases are available:

	arg-annot (default)

	resfinder

	card

	groot-db

	groot-core-db

These databases were clustered by sequence identity and stored as Multiple Sequence Alignments (MSAs). See groot-databases [https://groot-documentation.readthedocs.io/en/latest/groot-databases.html] for more info.

index

The index subcommand is used to create variation graphs from a pre-clustered ARG database and then index them. Here is an example:

groot index -m resfinder.90 -i grootIndex -w 100 -p 8

The above command will create a variation graph for each cluster in the resfinder.90 database and initialise an LSH forest index. It will then move through each graph traversal using a 100 node window, creating a MinHash sketch for each window. Finally, each sketch is added to the LSH Forest index. The index will be named grootIndex and contain several files.

Flags explained:

	-m: a directory of MSA files (the database from groot get)

	-i: where to save the index

	-w: the window size to use (should be similar to the length of query reads)

	-p: how many processors to use

The same index can be used on multiple samples, however, it should be re-indexed if you wish to change the seeding parameters.

Some more flags that can be used:

	-k: size of k-mer to use for MinHashing

	-s: size of MinHash sketch

	-x: number of partitions in the LSH Ensemble index

	-y: maxK in the LSH Ensemble index

	--maxSketchSpan: max number of identical neighbouring sketches permitted in any graph traversal

Important: GROOT can only accept MSAs as input. You can cluster your own database or use groot get to obtain a pre-clustered one.

align

The align subcommand is used to align reads against the indexed variation graphs. Here is an example:

groot align -i grootIndex -f file.fastq -t 0.97 -p 8 > ARG-reads.bam

The above command will seed the fastq reads against the indexed variation graphs. It will then perform a hierarchical local alignment of each seed against the variation graph traversals. The output alignment is essentially the ARG classified reads (which may be useful) and can then be used to report full-length ARGs (using the report subcommand).

Flags explained:

	-i: which index to use

	-f: what FASTQ reads to align

	-t: the containment threshold for seeding reads

	-p: how many processors to use

Data can streamed in and out of the align subcommand. For example:

gunzip -c file.gz | ./groot align -i grootIndex -p 8 | ./groot report

Multiple FASTQ files can be specified as input, however all are treated as the same sample and paired-end info isn’t used. To specify multiple files, make sure they are comma separated (-f fileA.fq,fileB.fq) or use gunzip/cat with a wildcard (gunzip -c *.fq.gz | groot…).

Some more flags that can be used:

	--noAlign: if set, no exact alignment will be performed (graphs will still be weighted using approximate read mappings)

report

The report subcommand is used to processes graph traversals and generate a resistome profile for a sample. Here is an example:

groot report --bamFile ARG-reads.bam -c 1

Flags explained:

	--bamFile: the input BAM file (output from groot align subcommand)

	-c: the coverage needed to report an ARG (e.g. 0.95 = 95% ARG bases covered by reads)

Some more flags that can be used:

	--lowCov: overrides c option and will report ARGs which may not be covered at the 5’/3’ ends

GROOT Graphs

This is a brief overview of the graphs used by GROOT and what they can be used for.

Overview

If you are reading this, you are probably familiar with some of the many Antibiotic Resistance Gene (ARG) databases that exist (e.g. ResFinder, CARD, ARG-annot). Each of these databases are basically multifasta files that contain the sequences of ARGs that confer resistance to antibiotics.

The ARG sequences in these databases can be grouped by type (based on nucleotide identity). Within each of these groups there are 1 or more ARG sequences which can vary from each other by 1 or more nucleotides. For example, the group of bla-OXA type genes contains many closely related sequences of genes encoding carbapenemases (bla-OXA-1, bla-OXA-2, bla-OXA-3 etc.) . Traditionally, querying the ARG databases involves looking at each of these closely related sequences within each group in turn, even if they only vary by 1 nucleotide.

Rather than using all of the linear reference sequences in the ARG databases, GROOT collapses closely related genes into variation graphs. For example, it can take all bla-OXA type genes in the ResFinder database and represent these as a single variation graph. To get the groups of closely related genes within a database, the database is clustered and each cluster is stored as a Multiple Sequence Alignment [https://en.wikipedia.org/wiki/Multiple_sequence_alignment] (MSAs). Please read the groot-databases [https://groot-documentation.readthedocs.io/en/latest/groot-databases.html] page for more information on this.

GROOT creates variation graphs from MSAs and stores them as special structures called groot graphs. The groot graphs essentially follow the format conventions of the Graphical Fragment Assembly (GFA) format [https://github.com/GFA-spec/GFA-spec/blob/master/GFA1] that is used by some genome assemblers and consists of:

	Segments: a continuous sequence or subsequence.

	Links: an overlap between two segments. Each link is from the end of one segment to the beginning of another segment. The link stores the orientation of each segment and the amount of basepairs overlapping.

	Paths: an ordered list of oriented segments, where each consecutive pair of oriented segments are supported by a link record.

So, a groot graph is:

a series of connected nodes; each node containing a segment, the links for that segment and the paths (genes) which utilise that segment.

For example, here is a graph for a set of closely related Bla-CTX-M type genes:

[image: _images/ctx-m-graph.png]ctxm-example

This graph is derived from 3 genes: (Bla)CTX-M-40, (Bla)CTX-M-63, (Bla)CTX-M-8. Each of these genes has a path through the graph, involving different combinations of segments. GROOT will index each of the paths so that it can seed query reads to graph regions.

Using the graphs

Since version 0.4, GROOT outputs any groot graphs that have had reads align to them. These graphs are in GFA format (.gfa) and can be viewed in Bandage [https://github.com/rrwick/Bandage].

In each GFA file, GROOT also records the number of reads that aligned to each segment of the variation graph. This allows us to look at which variants in an ARG gene cluster are dominant in a sample. For example, let’s look at a graph for BlaZ type genes found in a gut microbiome sample:

groot get -d resfinder
groot index -m resfinder.90 -i index -p 8
groot align -i index -f reads-1.fq,reads-2.fq -g groot-graphs -p 8 | groot report --lowCov

Bandage load groot-graphs/blaZ-groot-graph.gfa --draw

In the Graph display options, select Colour by depth. You will get something like this:

[image: _images/bla-z-graph.png]blaz-example

In this example, GROOT found two blaZ variants in a microbiome (blaZ_35 and blaZ_36), but one has 50X more coverage than the other over the variant sites (the red segments).

To tell which segments come from which genes, we can overlay path information. One way to do this is to blast each reference sequence against the graph segments and then colour the segments. Another way is to specify a path:

	open the blaZ-groot-graph.gfa file and get the path you want to highlight

e.g. blaZ_35:
1+,3+,4+,6+,7+,8+,10+,11+,13+,15+,16+,18+,19+,21+,22+,24+,25+,27+,28+,30+,31+,33+,34+,36+,37+,39+,40+,42+,43+,44+,46+,48+,49+,50+,52+,54+,55+

	in Bandage, select Output > Specify Exact Path For Copy and enter the path

	Bandage will then highlight the segments in the path:

[image: _images/bla-z-graph-path-highlight.png]blaz-example2

To finish, an important point about the RC and FC tags in the groot-graph.gfa files:

RC tags record the number of reads aligned to a segment, multipled by the length of the segment. This is so that bandage displays the depth nicely. FC tags record just the raw number of reads aligned to a segment.

GROOT Databases

This is a brief overview of the databases used by GROOT.

Overview

As mentioned on the groot-graphs [https://groot-documentation.readthedocs.io/en/latest/groot-graphs.html] page, GROOT creates variation graphs from Multiple Sequence Alignments [https://en.wikipedia.org/wiki/Multiple_sequence_alignment] (MSAs) and stores them as groot graphs.

The MSAs represent a clustered database, each cluster is a collection of sequences which share high nucleotide identity. GROOT reads in each MSA file and converts it to a graph.

A set of clustered databases is provided (use the groot get subcommand) or you can generate your own clustered database. To cluster a database yourself, you can use the following commands on any multifasta file containing the sequences you want to use with GROOT:

mkdir CLUSTERED-DB && cd $_

vsearch --cluster_size /path/to/ARGs.fna --id 0.90 --msaout MSA.tmp

awk '!a[$0]++ {of="./cluster-" ++fc ".msa"; print $0 >> of ; close(of)}' RS= ORS="\n\n" MSA.tmp && rm MSA.tmp

cd ..

	the above snippet will create a clustered database in the directory CLUSTERED-DB - now you can run groot index

groot index -m ./CLUSTERED-DB

groot-db and groot-core-db

As mentioned earlier, the groot get subcommand can download a pre-clustered database for you to use with GROOT. The following databases are available:

	arg-annot (default)

	resfinder

	card

	groot-db

	groot-core-db

The groot-db and groot-core-db are both databases that are derived from ResFinder, ARG-annot and CARD. They have been included after requests by several users for a combination of available ARG databases. They were made as follows:

groot-db is made by combining all sequences in ResFinder, ARG-annot and CARD. Duplicates are removed and the sequences are then clustered at 90% identity.

groot-core-db is made by combining sequences that are present in each of the ResFinder, ARG-annot and CARD databases. One copy of each sequence is kept and then this collection is clustered at 90% identity.

Both groot-db and groot-core-db prepend a tag to each reference sequence so that the origin can be determined. For example:

>*groot-db_ARGANNOT__(AGly)APH-Stph:HE579073:1778413-1779213:801

In the directory downloaded by groot get, there will also be a timestamp that tells you when the database was created. The GROOT database will have used the most recently available versions of ResFinder/CARD/ARG-annot. The script used to do this is available in the GROOT repo:

db/groot-database/make-groot-dbs.sh

Tutorial

This tutorial is intended to show you how to use GROOT to identify Antimicrobial Resistance Genes (ARGs) and generate resistome profiles as part of a metagenome analysis workflow.

We will use some metagenome data from a recent paper by Winglee et al. [https://doi.org/10.1186/s40168-017-0338-7], where they identify differences in the microbiota in rural versus recently urban subjects from the Hunan province of China.

In particular, we will explore this finding:

“Urban subjects have increased gene diversity, including increased antibiotic resistance”

The aims are:

	download and check the metagenome data (x40 samples)

	classify ARG-derived reads

	generate resistome profiles for each sample

	visualise the data

	look at ARG context

1. Setup an environment

Use conda to set up an environment with all the software we need for this tutorial:

conda create -n grootTutorial -c bioconda parallel sra-tools==2.8 fastqc==0.11.7 bbmap==37.90 multiqc groot==0.8.5 seqkit==0.7.2 samtools==1.4 metacherchant==0.1.0
source activate grootTutorial

2. Get the data

We downloaded additional file 1, table s1 from the Winglee paper [https://doi.org/10.1186/s40168-017-0338-7] and saved the SRA accession number and the rural/urban status for each metagenome used in the study.

To begin, save the accession table to file:

 samples.txt

 	SRR4454594	rural

 	SRR4454595	rural

 	SRR4454596	rural

 	SRR4454597	rural

 	SRR4454600	rural

 	SRR4454601	rural

 	SRR4454602	rural

 	SRR4454603	rural

 	SRR4454604	rural

 	SRR4454615	rural

 	SRR4454616	rural

 	SRR4454617	rural

 	SRR4454618	rural

 	SRR4454619	rural

 	SRR4454620	rural

 	SRR4454621	rural

 	SRR4454622	rural

 	SRR4454623	rural

 	SRR4454624	rural

 	SRR4454625	rural

 	SRR4454587	urban

 	SRR4454588	urban

 	SRR4454589	urban

 	SRR4454590	urban

 	SRR4454591	urban

 	SRR4454592	urban

 	SRR4454593	urban

 	SRR4454598	urban

 	SRR4454599	urban

 	SRR4454605	urban

 	SRR4454606	urban

 	SRR4454607	urban

 	SRR4454608	urban

 	SRR4454609	urban

 	SRR4454610	urban

 	SRR4454611	urban

 	SRR4454612	urban

 	SRR4454613	urban

 	SRR4454614	urban

 	SRR4454586	urban

Next, use fastq-dump to download the sequence data from the accession table:

cut -f 1 samples.txt | parallel --gnu "fastq-dump {}"

3. QC

Run FastQC [https://www.bioinformatics.ba] and check the quality of the data:

ls *.fastq | parallel --gnu "fastqc {}"
multiqc .

	open up the MultiQC report in a browser and check the data

	samples should all be clear of adapters

	3 samples failed on sequence quality

Try cleaning up the 3 failed samples using BBduk [https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/]:

ls SRR4454598.fastq SRR4454599.fastq SRR4454610.fastq | parallel --gnu "bbduk.sh in={} out={/.}.trimmed.fastq qtrim=rl trimq=20 minlength=97"

	check the data is now passing on sequence quality

	replace the original failed files with the trimmed ones

4. Run GROOT

Download the pre-clustered ARG-ANNOT [http://en.mediterranee-infection.com/article.php?laref=283%26titre=arg-annot] database:

groot get -d arg-annot

Index the database:

groot index -m arg-annot.90 -i groot-index -w 100 -p 8

	the metagenomes reads we downloaded earlier are 100 bases long

	we need to set the indexing window size (l) to 100 to match the query read length

	the default MinHash settings should be fine but you can play with them (groot index --help)

Align the reads against the index:

ls *.fastq | parallel --gnu "groot align -i groot-index -f {} -p 8 -g {/.}-groot-graphs > {/.}.bam"

	for each sample, the align subcommand produces a BAM file containing all graph traversals for each read

	each BAM file essentially contains the ARG-derived reads in each sample

	the graphs (.gfa) which had reads align are stored in a separate directory for each sample (-g {/.}-groot-graphs)

4.a. Compare ARG diversity

Now that we have classified ARG-derived reads from all of the samples, we can compare the proportion of ARG-derived reads in urban vs. rural samples. We are aiming to replicate the analysis as presented in figure 5d of the Winglee paper [https://doi.org/10.1186/s40168-017-0338-7]:

[image: _images/40168_2017_338_Fig5_HTML.gif]fig5

Firstly, calculate the proportion of ARG-derived reads in each sample and save to a csv file:

while read -r line
do
 ID=$(echo $line | cut -f1 -d ' ')
 status=$(echo $line | cut -f2 -d ' ')
 bamFile=${ID}.bam
 mapped=$(samtools view -c -F 4 $bamFile)
 proportion=$(echo "scale=10 ; $mapped / 10000000" | bc)
 printf "$status,$proportion\n" >> proportion-ARG-derived.csv
done < samples.txt

Now create a simple box plot using R:

library(ggplot2)

read in the data and log transform the proportion of ARG classified reads
data <- read.csv(file='proportion-ARG-derived.csv', header=FALSE)
colnames(data) <- c("status", "proportion")
data[2] <- log(data[2], 10)

plot the data and save to file
png(file = "boxplot.png")
ggplot(data, aes(x=status, y=proportion)) + geom_boxplot(fill="slateblue", alpha=0.8) + geom_point(alpha = 0.3, position = "jitter") + xlab("status") + ylab("log10(proportion ARG classified reads)")
dev.off()

This should produce a box plot like this:

[image: _images/boxplot.png]boxplot

We have now compared the proportion of ARG-derived reads from urban and rural samples. This has just used the ARG-derived reads, as was done in the original paper. Although the mean proportion of ARG-derived reads is greater in the urban set, our figure still looks a little different to the published figure. More to come on this…

4.b. Generate resistome profiles

The main advantage of GROOT is that it will generate a resistome profile by reporting full-length ARGs. To do this, we need to use the groot report command. The report command will output a tab separated file that looks like this:

 	ARG | 	read count | 	gene length | 	coverage |

 	argannot~~~(Bla)cfxA4~~~AY769933:1-966	452	966	966M

* the header is not printed in the actual reportLet’s report the resistome profiles for each of our samples:

ls *.bam | parallel --gnu "groot report --bamFile {} -c 1 --plotCov > {/.}.report"

	-c 1 tells groot to only report ARGs that have been entirely covered by reads, I.E. a full-length,100% identity match

	--plotCov tells groot to generate coverage plots for each ARG it reports

NOTE: --plotCov was removed after v.1.0.0 as it relied on a library that could not be packaged for conda. Hopefully I can add it back in soon.

We have now generated a resistome profile for each sample, using only full-length ARG sequences (present in the ARG-ANNOT database). We can sum rural/urban resistome profiles with a little bash loop to combine reports:

while read -r line
do
 ID=$(echo $line | cut -f1 -d ' ')
 status=$(echo $line | cut -f2 -d ' ')
 if [-s $ID.report]
 then
 cat $ID.report >> combined-profiles.$status.tsv
 fi
done < samples.txt
wc -l combined-profiles.*

The number of ARGs found isn’t very large and the difference between rural and urban isn’t that big… Let’s take a look at the coverage plots in the ./groot-plots folder. For example:

[image: _images/cov-plot.png]coplot

We can see that the 5’ and 3’ ends of the genes have low coverage compared to the rest of each gene. The way GROOT works by default is to seed reads covering only the ARGs in the database. So reads that only partially cover a gene (at the 5’ and 3’ ends) are unlikely to seed. In low coverage samples, which are samples are likely to be, this means that we may not annotate some ARGs using the default settings.

We can try 2 things to report more ARGs:

	set the --lowCov flag for groot report -> this will report ARGs with no coverage in the first few bases at the 5’ or 3’ ends

	re-index the database using a shorter MinHash signature (-s) or lower Jaccard similarity threshold (-j) -> this will increase the chance of seeding reads that partially cover a gene

Option 2 takes a bit longer as we need to go all the way back in the workflow to indexing, so let’s try option 1 for now:

ls *.bam | parallel --gnu "groot report --bamFile {} --lowCov > {/.}.lowCov.report"
while read -r line
do
 ID=$(echo $line | cut -f1 -d ' ')
 status=$(echo $line | cut -f2 -d ' ')
 if [-s $ID.lowCov.report]
 then
 cat $ID.lowCov.report >> combined-profiles.lowCov.$status.tsv
 fi
done < samples.txt
wc -l combined-profiles.lowCov.*

We’ve now ended up with a lot more ARGs being reported thanks to the --lowCov option; the downside is that we no longer have 100% length matches and we need to inspect the reports more closely. Here is an example report (SRR4454598):

 	ARG | 	read count | 	gene length | 	coverage |

 	argannot~~~(Bla)OXA-347~~~JN086160:1583-2407	41	825	2D822M1D

 	argannot~~~(Bla)cfxA5~~~AY769934:28-993	235	966	962M4D

 	argannot~~~(MLS)ErmB~~~M11180:714-1451	245	738	2D728M8D

 	argannot~~~(Tet)TetQ~~~Z21523:362-2287	1117	1974	3D1971M

The final column of the GROOT report output is a CIGAR-like representation of the covered bases: M=covered D=absent. The read count and coverage (plus the coverage plots) can help us assess the confidence in the reported genes when we use --lowCov. We can also check if reported ARGs share classified reads (i.e. multimappers). To compare reads aligning to 2 ARGs, you could try some commands like this:

split the bam by ARG
bamtools split -in out.bam -reference
extract reads aligning to specific ARGs
bedtools bamtofastq -i ARG1.bam -fq reads-aligned-to-ARG1.fq
bedtools bamtofastq -i ARG27.bam -fq reads-aligned-to-ARG27.fq
find matching reads
bbduk.sh in=reads-aligned-to-ARG1.fq ref=reads-aligned-to-ARG27.fq outm=matched.fq k=100 mm=f

Now let’s try plotting the resistome profiles:

More to content to come…

5. ARG context

Now we have a set of ARGs we know are present in one or more samples, we might want to take a look at what is carrying these genes. We will use metacherchant [https://www.ncbi.nlm.nih.gov/pubmed/29092015] to determine the genetic context of ARGs using subgraphs. We will also use Bandage [https://rrwick.github.io/Bandage/] and Kraken [https://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r46] (not installed as part of our conda environment).

Download the full ARG-ANNOT set of genes and then index with samtools:

wget https://github.com/will-rowe/groot/raw/master/db/full-ARG-databases/arg-annot-db/argannot-args.fna
samtools faidx argannot-args.fna

Now we can extract all the genes present in our resistome profiles:

samtools faidx argannot-args.fna `cut -f1 combined-profiles.urban.tsv` > urban-args.fna
samtools faidx argannot-args.fna `cut -f1 combined-profiles.rural.tsv` > rural-args.fna

Remove any duplicate genes:

cat urban-args.fna | seqkit rmdup -s -o urban-args.fna
cat rural-args.fna | seqkit rmdup -s -o rural-args.fna

As a first example, let’s look at the genomic context of one ARG ((Bla)OXA-347) in urban samples. To begin, get the samples that contain this ARG:

grep -l "argannot~~~(Bla)OXA-347~~~JN086160:1583-2407" *.lowCov.report | sed 's/.lowCov.report//' > samples-containing-blaOXA-347.list

We also need to store the reference sequence:

samtools faidx argannot-args.fna "argannot~~~(Bla)OXA-347~~~JN086160:1583-2407" > blaOXA-347.fna

Now we can run metacherchant:

while read -r sample
 do
	metacherchant.sh --tool environment-finder \
 -k 31 \
 --coverage=2 \
 --maxradius 1000 \
 --reads ${sample}.fastq \
 --seq blaOXA-347.fna \
 --output "./metacherchant/${sample}/output" \
 --work-dir "./metacherchant/${sample}/workDir" \
	 -p 42 \
	 --trim
 done < samples-containing-blaOXA-347.list

To classify the contigs assembled around the detected ARGs, try Kraken:

while read -r sample
 do
 kraken --threads 8 --preload --fasta-input --db /path/to/minikraken_20141208 metacherchant/${sample}/output/seqs.fasta | kraken-report --db /path/to/minikraken_20141208 > metacherchant/${sample}/${sample}-kraken.report
 done < samples-containing-blaOXA-347.list

* you will need to install kraken and download minikraken for this

To visualise the ARG context, first load the assembly graph into Bandage:

Bandage load metacherchant/SRR4454592/output/graph.gfa

Next,

More content to come soon…

Index

 _static/up-pressed.png

_static/ajax-loader.gif

_images/cov-plot.png
707

coverage (number of reads at position)

10

coverage plot

argannot~

T
300
position in gene

_static/up.png

_images/ctx-m-graph.png

_static/boxplot.png
(spess payssero Sy vorodaidoybol

status.

_static/comment-bright.png

_static/bla-z-graph-path-highlight.png
Bandage - *blaZ_32_AP004832-groot-graph.gfa

Graph information
Nodes: 55
o Edges: 72

Total length: 878 ©Exact () Partial

More info Find node(s)

Graph drawing

@ Scope: | Entire graph
© Style: @ Single Double

o

() Draw graph
Graph display
(1] Zoom: 2511% <
© Node width: 5.0 <
@ | Colour by depth <
Node labels
ece # Specity exact path
Custom Name
o Lenan Depth Define a path by providing an ordered list of exact nodes, with their
BLAST hits | CSV data: directionality, separated by commas. You can optionally specify a
start position for the first node and/or an end position for the last
node by enclosing a number in parentheses at the beginning and/or
() Font Text outline end.
Example without start/end positions: 5+, 6-, 41+
BLAST Example with start/end positions: (3039) 5+, 6-, 41+ (1023)
@ Create/view BLAST search Double clicking on a node in the graph will add it to the path, if
possible. As directionality is important, it may be helpful to o this
@ Query: none when the graph is drawn in double mode.

© [|Circular path

14,34,4+,6+,7+,8+,10+,114,13+,15+,16+,18+,10+,21+ 22+, 24+, 25+,
27+,28+,30+,31+,33+,34+,36+,37+,30+,40+,42+ 43+ 44+,46+,
48+,49+,50+,52+,54+,55+

o Valid path: 846 bp

Copy to clipboard Save tofile

_static/bla-z-graph.png
ece Bandage - *blaZ_32_AP004832-groot-graph.gfa

Graph information Find nodes
- Nodes: 55 @ Node(s):
Edges: 72
Total le:gglh. 878 @ Match: @ Exact () Partial
More info Find node(s)

‘Graph drawing
@ Scope: | Entire graph
© Style: © Single Double
() Draw graph
Graph display
(1] Zoom: 2511% <
© Node width: 5.0 <
© | Colour by depth
Node labels

Custom Name

Length Depth
@ "iBLasT hits CSV data:
(1] Font Text outline
BLAST

(1] Create/view BLAST search
@ Query: none

o

_static/comment-close.png

_static/comment.png

_images/bla-z-graph-path-highlight.png
Bandage - *blaZ_32_AP004832-groot-graph.gfa

Graph information
Nodes: 55
o Edges: 72

Total length: 878 ©Exact () Partial

More info Find node(s)

Graph drawing

@ Scope: | Entire graph
© Style: @ Single Double

o

() Draw graph
Graph display
(1] Zoom: 2511% <
© Node width: 5.0 <
@ | Colour by depth <
Node labels
ece # Specity exact path
Custom Name
o Lenan Depth Define a path by providing an ordered list of exact nodes, with their
BLAST hits | CSV data: directionality, separated by commas. You can optionally specify a
start position for the first node and/or an end position for the last
node by enclosing a number in parentheses at the beginning and/or
() Font Text outline end.
Example without start/end positions: 5+, 6-, 41+
BLAST Example with start/end positions: (3039) 5+, 6-, 41+ (1023)
@ Create/view BLAST search Double clicking on a node in the graph will add it to the path, if
possible. As directionality is important, it may be helpful to o this
@ Query: none when the graph is drawn in double mode.

© [|Circular path

14,34,4+,6+,7+,8+,10+,114,13+,15+,16+,18+,10+,21+ 22+, 24+, 25+,
27+,28+,30+,31+,33+,34+,36+,37+,30+,40+,42+ 43+ 44+,46+,
48+,49+,50+,52+,54+,55+

o Valid path: 846 bp

Copy to clipboard Save tofile

_images/bla-z-graph.png
ece Bandage - *blaZ_32_AP004832-groot-graph.gfa

Graph information Find nodes
- Nodes: 55 @ Node(s):
Edges: 72
Total le:gglh. 878 @ Match: @ Exact () Partial
More info Find node(s)

‘Graph drawing
@ Scope: | Entire graph
© Style: © Single Double
() Draw graph
Graph display
(1] Zoom: 2511% <
© Node width: 5.0 <
© | Colour by depth
Node labels

Custom Name

Length Depth
@ "iBLasT hits CSV data:
(1] Font Text outline
BLAST

(1] Create/view BLAST search
@ Query: none

o

_images/40168_2017_338_Fig5_HTML.gif
MDS1 (43%)

w < ol . eda |8
d 5 8 . §
o - s e il B
o o pE8 5k H
98§ 5887 2 o Bl
< 25 S/ 2va H 2
K] . LI (peddew mumm_ :u_:ane.nue.ms
o9
£28, ., . R
88kt o
23* s
558 I f...m
ov st 0 sz 0z gi 01E 2z vz 9z ez e
O oo O rodat s Seobesasyon
Hai T
ts .4 [t ?.T. i
i St B
@ . S -
3 3
o * .
] o3 N
5 o
N G
. i 5
A
u ol
l o M
. IS |

< (%22) ZSaN o (%81) ZSaW

_images/boxplot.png
(spess payssero Sy vorodaidoybol

status.

_static/cov-plot.png
707

coverage (number of reads at position)

10

coverage plot

argannot~

T
300
position in gene

nav.xhtml

 Table of Contents

 		
 Welcome to GROOT’s wiki!

 		
 Using GROOT

 		
 An example

 		
 GROOT subcommands

 		
 get

 		
 index

 		
 align

 		
 report

 		
 GROOT Graphs

 		
 Overview

 		
 Using the graphs

 		
 GROOT Databases

 		
 Overview

 		
 groot-db and groot-core-db

 		
 Tutorial

 		
 1. Setup an environment

 		
 2. Get the data

 		
 3. QC

 		
 4. Run GROOT

 		
 4.a. Compare ARG diversity

 		
 4.b. Generate resistome profiles

 		
 5. ARG context

_static/down.png

_static/ctx-m-graph.png

_static/down-pressed.png

_static/minus.png

_static/file.png

_static/groot-logo.png

_static/plus.png

